skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Haoze"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Soft shape-shifting materials offer enhanced adaptability in shape-governed properties and functionalities. However, once morphed, they struggle to reprogram their shapes and simultaneously bear loads for fulfilling multifunctionalities. Here, we report a dynamic spatiotemporal shape-shifting kirigami dome metasheet with high deformability and stiffness that responds rapidly to dynamically changing magnetic fields. The magnetic kirigami dome exhibits over twice higher doming height and 1.5 times larger bending curvature, as well as sevenfold enhanced structural stiffness compared to its continuous counterpart without cuts. The metasheet achieves omnidirectional doming and multimodal translational and rotational wave-like shape-shifting, quickly responding to changing magnetic fields within 2 milliseconds. Using the dynamic shape-shifting and adaptive interactions with objects, we demonstrate its applications in voxelated dynamic displays and remote magnetic multimodal directional and rotary manipulation of nonmagnetic objects without grasping. It shows high-load transportation ability of over 40 times its own weight, as well as versatility in handling objects of different materials (liquid and solid), sizes, shapes, and weights. 
    more » « less
    Free, publicly-accessible full text available December 6, 2025
  2. Abstract Navigating in three‐dimensional (3D) environments with precise motion control is challenging for soft robots due to their inherent flexibility. Inspired by aerial trams, here, an autonomous soft twisted ring robot is reported capable of navigating pre‐defined tracks in 3D space under constant photothermal actuation, without requiring spatiotemporal control of actuation sources. Made of liquid crystal elastomers, the ring robot, suspended on thread‐based tracks, self‐flips around its centerline when exposed to constant infrared light. Curling the twisted ring around tracks converts its self‐rotary motion into autonomous linear movement via screw theory. This mechanism enables the autonomous robot to adapt to tracks of various materials and micron‐to‐millimeter sizes, overcome obstacles like knots on tracks, transport loads over 12 times its weight, ascend and descend steep slopes up to 80°, and navigate complex paths, including circular, polygonal, and 3D spiral tracks, as well as loose threads with dynamically changing shapes. 
    more » « less